Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
4.
Rev Argent Microbiol ; 54(2): 74-80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34412928

RESUMO

The study of outer membrane vesicles (OMVs) became relevant because of their probable important role in the transfer of virulence factors to host cells. Campylobacter fetus is mainly a mammal pathogen whose virulence characterization is still limited. The aim of this study was to evaluate and to characterize the secretion of OMVs in this bacterium. By transmission electron microscopy, we confirmed the production of OMVs in all the strains assayed. Purified OMVs showed a spherical shape and variable size, although comparable to those of other gram-negative bacteria. We also confirmed the presence of the S-layer on the surface of the OMVs of all the strains assayed with the exception of those derived from the NTCC reference strain. In addition, we demonstrated their immunoreactivity by the dot-blot assay. Hence, C. fetus OMVs could contribute to the modulation of the host response and constitute a candidate to be evaluated as an adjuvant of current vaccines used in the veterinary field. This work represents a platform to drive future studies towards the role of these subcellular structures in C. fetus-host interaction.


Assuntos
Proteínas da Membrana Bacteriana Externa , Campylobacter fetus , Animais , Proteínas da Membrana Bacteriana Externa/química , Bactérias Gram-Negativas , Mamíferos , Virulência , Fatores de Virulência
5.
Tuberculosis (Edinb) ; 132: 102162, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34952299

RESUMO

Mammalian cell entry (mce) genes are not only present in genomes of pathogenic mycobacteria, including Mycobacterium tuberculosis (the causative agent of tuberculosis), but also in saprophytic and opportunistic mycobacterial species. MCE are conserved cell-wall proteins encoded by mce operons, which maintain an identical structure in all mycobacteria: two yrbE genes (A and B) followed by six mce genes (A, B, C, D, E and F). Although these proteins are known to participate in the virulence of pathogenic mycobacteria, the presence of the operons in nonpathogenic mycobacteria and other bacteria indicates that they play another role apart from host cell invasion. In this respect, more recent studies suggest that they are functionally similar to ABC transporters and form part of lipid transporters in Actinobacteria. To date, most reviews on mce operons in the literature discuss their role in virulence. However, according to data from transcriptional studies, mce genes, particularly the mce1 and mce4 operons, modify their expression according to the carbon source and upon hypoxia, starvation, surface stress and oxidative stress; which suggests a role of MCE proteins in the response of Mycobacteria to external stressors. In addition to these data, this review also summarizes the studies demonstrating the role of MCE proteins as lipid transporters as well as the relevance of their transport function in the interaction of pathogenic Mycobacteria with the hosts. Altogether, the evidence to date would indicate that MCE proteins participate in the response to the stress conditions that mycobacteria encounter during infection, by participating in the cell wall remodelling and possibly contributing to lipid homeostasis.


Assuntos
Proteínas de Bactérias/imunologia , Transporte Biológico/imunologia , Parede Celular/metabolismo , Homeostase/imunologia , Proteínas de Bactérias/metabolismo , Transporte Biológico/genética , Parede Celular/genética , Homeostase/fisiologia , Humanos , Lipídeos/genética
6.
BMC Genomics ; 22(1): 893, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906091

RESUMO

BACKGROUND: Leaf senescence delay impacts positively in grain yield by maintaining the photosynthetic area during the reproductive stage and during grain filling. Therefore a comprehensive understanding of the gene families associated with leaf senescence is essential. NAC transcription factors (TF) form a large plant-specific gene family involved in regulating development, senescence, and responses to biotic and abiotic stresses. The main goal of this work was to identify sunflower NAC TF (HaNAC) and their association with senescence, studying their orthologous to understand possible functional relationships between genes of different species. RESULTS: To clarify the orthologous relationships, we used an in-depth comparative study of four divergent taxa, in dicots and monocots, with completely sequenced genomes (Arabidopsis thaliana, Vitis vinifera, Musa acuminata and Oryza sativa). These orthologous groups provide a curated resource for large scale protein sequence annotation of NAC TF. From the 151 HaNAC genes detected in the latest version of the sunflower genome, 50 genes were associated with senescence traits. These genes showed significant differential expression in two contrasting lines according to an RNAseq assay. An assessment of overexpressing the Arabidopsis line for HaNAC001 (a gene of the same orthologous group of Arabidopsis thaliana ORE1) revealed that this line displayed a significantly higher number of senescent leaves and a pronounced change in development rate. CONCLUSIONS: This finding suggests HaNAC001 as an interesting candidate to explore the molecular regulation of senescence in sunflower.


Assuntos
Helianthus , Proteínas de Plantas , Senescência Vegetal , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Helianthus/genética , Helianthus/metabolismo , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Senescência Vegetal/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Dev Genes Evol ; 231(1-2): 33-45, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33704576

RESUMO

The morphology and physiology of the oogenesis have been well studied in the vector of Chagas disease Rhodnius prolixus. However, the molecular interactions that regulate the process of egg formation, key for the reproductive cycle of the vector, is still largely unknown. In order to understand the molecular and cellular basis of the oogenesis, we examined the function of the gene Bicaudal C (BicC) during oogenesis and early development of R. prolixus. We show that R. prolixus BicC (Rp-BicC) gene is expressed in the germarium, with cytoplasmic distribution, as well as in the follicular epithelium of the developing oocytes. RNAi silencing of Rp-BicC resulted in sterile females that lay few, small, non-viable eggs. The ovaries are reduced in size and show a disarray of the follicular epithelium. This indicates that Rp-BicC has a central role in the regulation of oogenesis. Although the follicular cells are able to form the chorion, the uptake of vitelline by the oocytes is compromised. We show evidence that the polarity of the follicular epithelium and the endocytic pathway, which are crucial for the proper yolk deposition, are affected. This study provides insights into the molecular mechanisms underlying oocyte development and show that Rp-BicC is important for de developmental of the egg and, therefore, a key player in the reproduction of this insect.


Assuntos
Proteínas de Insetos/metabolismo , Oogênese , Proteínas de Ligação a RNA/metabolismo , Rhodnius/metabolismo , Animais , Células Epiteliais/metabolismo , Feminino , Proteínas de Insetos/genética , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Proteínas de Ligação a RNA/genética , Rhodnius/genética , Rhodnius/crescimento & desenvolvimento
8.
PLoS One ; 16(1): e0244724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33406150

RESUMO

The gastrointestinal tract of chickens harbors a highly diverse microbiota contributing not only to nutrition, but also to the physiological development of the gastrointestinal tract. Microbiota composition depends on many factors such as the portion of the intestine as well as the diet, age, genotype, or geographical origin of birds. The aim of the present study was to demonstrate the influence of the geographical location over the cecal microbiota from broilers. We used metabarcoding sequencing datasets of the 16S rRNA gene publicly available to compare the composition of the Argentine microbiota against the microbiota of broilers from another seven countries (Germany, Australia, Croatia, Slovenia, United States of America, Hungary, and Malaysia). Geographical location played a dominant role in shaping chicken gut microbiota (Adonis R2 = 0.6325, P = 0.001; Mantel statistic r = 0.1524, P = 4e-04) over any other evaluated factor. The geographical origin particularly affected the relative abundance of the families Bacteroidaceae, Lactobacillaceae, Lachnospiraceae, Ruminococcaceae, and Clostridiaceae. Because of the evident divergence of microbiota among countries we coined the term "local microbiota" as convergent feature that conflates non-genetic factors, in the perspective of human-environmental geography. Local microbiota should be taken into consideration as a native overall threshold value for further appraisals when testing the production performance and performing correlation analysis of gut microbiota modulation against different kind of diet and/or management approaches. In this regard, we described the Argentine poultry cecal microbiota by means of samples both from experimental trials and commercial farms. Likewise, we were able to identify a core microbiota composed of 65 operational taxonomic units assigned to seven phyla and 38 families, with the four most abundant taxa belonging to Bacteroides genus, Rikenellaceae family, Clostridiales order, and Ruminococcaceae family.


Assuntos
Ceco/microbiologia , Galinhas/microbiologia , Microbioma Gastrointestinal/genética , Ração Animal , Animais , Austrália , Croácia , Código de Barras de DNA Taxonômico , Alemanha , Hungria , Malásia , RNA Ribossômico 16S/genética , Eslovênia , Estados Unidos
9.
Vet Microbiol ; 247: 108758, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32768211

RESUMO

Members of the Mycobacterium tuberculosis complex (MTBC) are responsible for tuberculosis in several mammals. In this complex, Mycobacterium tuberculosis and Mycobacterium bovis, which are closely related, show host preference for humans and cattle, respectively. Although human and bovine tuberculosis are clinically similar, M. tuberculosis mostly causes latent infection in humans, whereas M. bovis frequently leads to an acute infection in cattle. This review attempts to connect the pathology in experimental animal models as well as the cellular responses to M. bovis and M. tuberculosis regarding the differences in protein expression and regulatory mechanisms of both pathogens that could explain their apparent divergent latency behaviour. The occurrence of latent bovine tuberculosis (bTB) would represent a serious complication for the eradication of the disease in cattle, with the risk of onward transmission to humans. Thus, understanding the physiological events that may lead to the state of latency in bTB could assist in the development of appropriate prevention and control tools.


Assuntos
Tuberculose Latente/microbiologia , Macrófagos/microbiologia , Mycobacterium bovis/fisiologia , Mycobacterium tuberculosis/fisiologia , Tuberculose Bovina/microbiologia , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Proteômica , Tuberculose/microbiologia
10.
Metabolomics ; 15(4): 46, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874962

RESUMO

INTRODUCTION: To date, most studies of natural variation and metabolite quantitative trait loci (mQTL) in tomato have focused on fruit metabolism, leaving aside the identification of genomic regions involved in the regulation of leaf metabolism. OBJECTIVE: This study was conducted to identify leaf mQTL in tomato and to assess the association of leaf metabolites and physiological traits with the metabolite levels from other tissues. METHODS: The analysis of components of leaf metabolism was performed by phenotypying 76 tomato ILs with chromosome segments of the wild species Solanum pennellii in the genetic background of a cultivated tomato (S. lycopersicum) variety M82. The plants were cultivated in two different environments in independent years and samples were harvested from mature leaves of non-flowering plants at the middle of the light period. The non-targeted metabolite profiling was obtained by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). With the data set obtained in this study and already published metabolomics data from seed and fruit, we performed QTL mapping, heritability and correlation analyses. RESULTS: Changes in metabolite contents were evident in the ILs that are potentially important with respect to stress responses and plant physiology. By analyzing the obtained data, we identified 42 positive and 76 negative mQTL involved in carbon and nitrogen metabolism. CONCLUSIONS: Overall, these findings allowed the identification of S. lycopersicum genome regions involved in the regulation of leaf primary carbon and nitrogen metabolism, as well as the association of leaf metabolites with metabolites from seeds and fruits.


Assuntos
Folhas de Planta/genética , Locos de Características Quantitativas/genética , Solanum lycopersicum/genética , Mapeamento Cromossômico/métodos , Frutas/genética , Cromatografia Gasosa-Espectrometria de Massas/métodos , Solanum lycopersicum/metabolismo , Metaboloma/genética , Metabolômica/métodos , Fenótipo , Folhas de Planta/química , Folhas de Planta/metabolismo , Sementes/genética
11.
Virulence ; 4(1): 3-66, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23076359

RESUMO

The Mycobacterium tuberculosis complex (MTBC) consists of closely related species that cause tuberculosis in both humans and animals. This illness, still today, remains to be one of the leading causes of morbidity and mortality throughout the world. The mycobacteria enter the host by air, and, once in the lungs, are phagocytated by macrophages. This may lead to the rapid elimination of the bacillus or to the triggering of an active tuberculosis infection. A large number of different virulence factors have evolved in MTBC members as a response to the host immune reaction. The aim of this review is to describe the bacterial genes/proteins that are essential for the virulence of MTBC species, and that have been demonstrated in an in vivo model of infection. Knowledge of MTBC virulence factors is essential for the development of new vaccines and drugs to help manage the disease toward an increasingly more tuberculosis-free world.


Assuntos
Mycobacterium tuberculosis/patogenicidade , Tuberculose/microbiologia , Tuberculose/veterinária , Fatores de Virulência , Animais , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune
12.
Microbes Infect ; 12(14-15): 1236-43, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20888425

RESUMO

Immunodominant MPB83 antigen from Mycobacterium bovis was expressed as a chimeric protein fused to either ß-galactosidase, outer membrane lipoprotein OMP19 or periplasmic protein BP26 in gram-negative Brucella abortus S19, in all cases driven by each gene's own promoter. All fusion proteins were successfully expressed and localized in the expected subcellular fraction. Moreover, OMP19-MPB83 was processed as a lipoprotein when expressed in B. abortus. Splenocytes from BALB/c mice immunized with the recombinant S19 strains carrying the genes coding for the heterologous antigens in replicative plasmids, showed equally specific INF-γ production in response to MPB83 stimulation. Association to the lipid moiety of OMP19 presented no advantage in terms of immunogenicity for MPB83. In contrast, fusion to BP26, which was encoded by an integrative plasmid, resulted in a weaker immune response. None of the constructions affected the survival rate or the infection pattern of Brucella. We concluded that B. abortus S19 is an appropriate candidate for the expression of M. bovis antigens both associated to the membrane or cytosolic fraction and may provide the basis for a future combined vaccine for bovine brucellosis and tuberculosis.


Assuntos
Antígenos de Bactérias/biossíntese , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/imunologia , Brucella abortus/genética , Vetores Genéticos , Imunidade Celular , Proteínas de Membrana/biossíntese , Proteínas de Membrana/imunologia , Mycobacterium bovis/imunologia , Animais , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Vacina contra Brucelose/genética , Vacina contra Brucelose/imunologia , Brucella abortus/imunologia , Bovinos , Feminino , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Lipoproteínas/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium bovis/genética , Plasmídeos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Baço/imunologia , Vacinas contra a Tuberculose/genética , Vacinas contra a Tuberculose/imunologia , beta-Galactosidase/genética
13.
Microbes Infect ; 10(6): 635-41, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18462974

RESUMO

Brucella abortus strain 19 (live vaccine) induces a strong humoral and cellular immune response and therefore, it is an attractive vector for the delivery of heterologous antigens. The objective of the present study was to express the rhoptry-associated protein (RAP1) of Babesia bovis in B. abortus S19, as a model for heterologous expression of immunostimulatory antigens from veterinary pathogens. A plasmid for the expression of recombinant proteins fused to the aminoterminal of the outer membrane lipoprotein OMP19 was created, pursuing the objective of increasing the immunogenicity of the recombinant antigen being expressed by its association to a lipid moiety. Recombinant strains of B. abortus S19 expressing RAP1 as a fusion protein either with the first amino acids of beta-galactosidase (S19pBB-RAP1) or B. abortus OMP19 (S19pBB19-RAP1) were generated. Plasmid stability and the immunogenicity of the heterologous proteins were analyzed. Mice immunized with S19pBB-RAP1 or S19pBB19-RAP1 developed specific humoral immune response to RAP1, IgG2a being the predominant antibody isotype. Furthermore, a specific cellular immune response to recombinant RAP1 was elicited in vitro by lymphocytes from mice immunized with both strains. Therefore, we concluded that B. abortus S19 expressing RAP1 is immunostimulatory and may provide the basis for combined heterologous vaccines for babesiosis and brucellosis.


Assuntos
Babesia bovis/genética , Brucella abortus/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Babesiose/imunologia , Babesiose/prevenção & controle , Proteínas da Membrana Bacteriana Externa/imunologia , Vacina contra Brucelose/imunologia , Brucella abortus/genética , Brucelose/imunologia , Brucelose/prevenção & controle , Vetores Genéticos , Camundongos , Proteínas de Protozoários/genética , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/imunologia
14.
Infect Immun ; 75(1): 379-89, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17088356

RESUMO

Brucella spp., like other pathogens, must cope with the environment of diverse host niches during the infection process. In doing this, pathogens evolved different type of transport systems to help them survive and disseminate within the host. Members of the TolC family have been shown to be involved in the export of chemically diverse molecules ranging from large protein toxins to small toxic compounds. The role of proteins from the TolC family in Brucella and other alpha-2-proteobacteria has been explored little. The gene encoding the unique member of the TolC family from Brucella suis (BepC) was cloned and expressed in an Escherichia coli mutant disrupted in the gene encoding TolC, which has the peculiarity of being involved in diverse transport functions. BepC fully complemented the resistance to drugs such as chloramphenicol and acriflavine but was incapable of restoring hemolysin secretion in the tolC mutant of E. coli. An insertional mutation in the bepC gene strongly affected the resistance phenotype of B. suis to bile salts and toxic chemicals such as ethidium bromide and rhodamine and significantly decreased the resistance to antibiotics such as erythromycin, ampicillin, tetracycline, and norfloxacin. Moreover, the B. suis bepC mutant was attenuated in the mouse model of infection. Taken together, these results suggest that BepC-dependent efflux processes of toxic compounds contribute to B. suis survival inside the host.


Assuntos
Anti-Infecciosos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella suis/efeitos dos fármacos , Brucella suis/patogenicidade , Resistência a Medicamentos/genética , Animais , Clonagem Molecular , Feminino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Reação em Cadeia da Polimerase , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...